Model persistence =============== We next demonstrate how simple it is to load a pre-trained model and obtain some predictions. The example assumes you are in the `./examples` folder of the repo. .. code:: python3 import autoBOTLib import pandas as pd ## Load example data frame dataframe = pd.read_csv("../data/insults/train.tsv", sep="\t") train_sequences = dataframe['text_a'].values.tolist() train_targets = dataframe['label'].values autoBOTLibObj = autoBOTLib.GAlearner( train_sequences, # input sequences train_targets, # target space time_constraint=2, # time in hours num_cpu="all", # number of CPUs to use task_name="example test", # task identifier hof_size=3, # size of the hall of fame top_k_importances=25, # how many top features to output as final ranking memory_storage= "../memory/conceptnet.txt.gz", # tripled base for concept features representation_type="symbolic") # or symbolic or neural autoBOTLibObj.evolve( nind=8, ## population size strategy="evolution", ## optimization strategy crossover_proba=0.6, ## crossover rate mutpb=0.4) ## mutation rate ## Persistence demonstration (how to store models for further use?) autoBOTLib.store_autobot_model(autoBOTLibObj, "../stored_models/example_insults_model.pickle") Let's next load the very same model and do some predictions. .. code:: python3 ## A simple example showcasing the minimal usecase of autoBOTLib on an insults classification data. import autoBOTLib import pandas as pd ## Simply load the model autoBOTLibObj = autoBOTLib.load_autobot_model("../stored_models/example_insults_model.pickle") dataframe2 = pd.read_csv("../data/insults/test.tsv", sep="\t") test_sequences = dataframe2['text_a'].values.tolist() test_targets = dataframe2['label'].values ## Predict with the model predictions = autoBOTLibObj.predict(test_sequences) performance = autoBOTLib.compute_metrics( "first_run_task_name", predictions, test_targets) ## compute F1, acc and F1_acc (as in GLUE) print(performance)